تقویت کننده
تقویت‌کننده

آمپلی فایر یا تقویت کننده های الکترونیکی در موسیقی برای تقویت صدای سازهای پیکاپ داری مانند گیتار الکتریک، گیتار باس، ویولون و ... استفاده می شود.






عملکرد دستگاه

امپلی فایرها در به طور عمده دارای دو مدار الکتریکی به نام دریافت سیگنال صدا (Pre Amp) و تقویت کنندهٔ صدا (Power Amp) هستند. از مهمترین قطعاتی که در کیفیت صدای یک امپ بسیار مهم است وجود یک لامپ خلا می‌باشد. در گذشته در تمامی آمپلی فایرها از لامپ خلا استفاده می شد اما با گذشت زمان و روی کار آمدن ترانزیستورها، جایگزین مناسبی برای لامپ‌های خلأ به میدان آمد که از لحاظ هزینه بسیار کمتر از لامپ‌های خلأ بود. اما صدای تولید شده از خازن‌ها هیچگاه کیفیت صدای تولید شده توسط لامپ‌های خلأ را نداشت و به همین دلیل در بسیاری از موارد حرفه‌ای از همان لامپ‌های خلأ قدیمی استفاده می‌شود.





بلندگوی لسلی
بلندگوی لسلی ( بلندگوی گردان ) (به انگلیسی: Leslie Speaker) ساختاریست تشکیل شده از تقویت کننده/بلندگو که برای ایجاد تغییر در صدا با استفاده از اثر داپلر توسط دانلد لسلی اختراع شده.





تقویت‌کننده الکترونیکی

تقویت کننده الکترونیکی وسیله‌ای برای افزایش توان سیگنال می‌باشد. تقویت کننده شکل سیگنال ورودی را حفظ کرده اما دامنه بزرگتر آن را بزرگتر می‌کند.

از تقویت کننده ها برای تقویت صدای سازهای مانند گیتار الکتریک، گیتار باس، ویولن برای تقویت انواع خروجی های صدا مانند دستگاه های پخش خانگی، دستگاه های پخش خودرو و برای تقویت صداهای ضبط شده در مسیر دستگاه های ضبط صدا در استودیو های صوتی استفاده می شود.





بلندگو

بلندگو به گونه‌ای دستگاه مبدل انرژی گفته می‌شود که انرژی الکتریکی را به صدا تبدیل می‌کند. واژه بلندگو ممکن است تنها به یک ترانسدیوسر (که به آن درایور گویند) و یا به سیستمی شامل چندین درایور و همچنین دیگر قطعات الکترونیکی اطلاق شود. بلندگو بخشی از هر سیستم صوتی است و معمولاً تفاوت کیفیت در سیستم‌های صوتی ناشی از این بخش است و بیشترین اعوجاج در صدا در این بخش صورت می‌گیرد.






تاریخچه

فیلیپ رئیس یک بلندگوی الکتریکی را در سال ۱۸۶۳ در تلفن خود نصب کرد که قادر بود صدایی واضح را مجددا تولید کند.





بلندگوی رایانه
بلندگوی رایانه (به انگلیسی: Computer speaker) دستگاهی از دسته سخت‌افزار رایانه است که وظیفه‌ی انتقال صوت به بیرون از رایانه را دارا می‌باشد؛ این دستگاه‌ها بیشتر دارای یک آمپلی‌فایر (تقویت‌کننده الکترونیکی) داخلی با قدرت کم هستند.ارتباط صوتی استاندارد این دستگاه‌ها با رایانه از طریق کابل ۳٫۵ میلی متری (حدود یک هشتم اینچ) که رابط تی‌آراس نام دارد و اغلب به رنگ سبز مغزپسته‌ای است برقرار می‌شود.





مانیتور استودیو

مانیتور استودیو نوعی از بلندگوها است که برای تولید برنامه‌های کاربردی مخصوص استودیو ضبط کاربرد دارد. فرق این بلندگوها با بلندگوهای معمولی در این است که صدای خارج‌شونده از این دستگاه‌ها فاقد هرگونه تغییر و بیس بوده و صرفاً هرآنچه که درآن وارد می‌شود را خارج می‌کند. در اغلب موارد برای تفکیک بهتر صداهای ورودی این قطعه نیازمند تقویت‌کننده الکترونیکی است.






صدا

صدا یا صوت از انواع انرژی است که از تحرک ذرات ماده بوجود می‌آیند به این گونه که یک ذره با حرکت (برخورد) خود به ذره‌ای دیگر ذرهٔ دیگر را به حرکت در می‌آورد و به همین ترتیب است که صوت نشر می‌یابد. صدا ارتعاشیست که توسط حس شنوایی انسان درک میشود. ما معمولاً اصواتی که در هوا حرکت میکنند را میشنویم ولی صدا میتواند در گاز، مایع و حتی جامدات نیز حرکت کند.صدا ص َ (ع اِ) ۞ معرب «سدا» است ۞ و آن آوازی باشد که در کوه و گنبد وامثال آن پیچد و باز همان شنیده شود و در عربی نیز همین معنی را دارد .

سرعت صوت در جامدات بدلیل تراکم زیاد مولکولها، بیشتر از مایعات و در مایعات نیز بیشتر از گازها است. صوت بر خلاف امواج دیگر مانند نور و گرما فقط در محیطی نشر می‌یابد که ماده وجود داشته باشد و این بدین معناست که اگر بر سطح ماه (که هوایی وجود ندارد) انفجاری روی دهد شما هیچ وقت صدای آنرا نمی‌شنوید. از واحد دسی‌بل نیز برای اندازه گیری شدت صوت استفاده می‌کنند. محدودهٔ شنوایی انسان بین ۲۰ تا ۲۰۰۰۰ هرتز می‌باشد.






خصوصیات صدا

ویژگیهای صدا عبارتند از بسامد، طول موج، دامنه و سرعت
بسامد و طول موج

بسامد تعداد تغییرات فشار هوا در هر ثانیه در یک نقطه ی ثابت است که موج صدا در حال گذر از آن میباشد. یک چرخه ی نوسانی ساده در یک ثانیه برابر با یک هرتز است. طول موج برابر فاصله ی بین دو قله ی متوالی بوده که موج در مدت زمان یک چرخه ی نوسانی آنرا طی میکند.






سرعت صوت

سرعت انتشار صوت بستگی به نوع، دما و فشار محیطی که صوت در آن منتشر میشود دارد. در شرایط طبیعی از آنجایی که هوا تقریباً بصورت یک گاز کامل رفتار میکند سرعت صوت وابسته به فشار هوا نخواهد بود. در هوای خشک در دمای 20 درجه ی سانتیگراد سرعت صوت حدوداً 343 متر در ثانیه یعنی حدوداً یک متر در هر 3 هزارم ثانیه است. سرعت صوت همچنین وابسته به بسامد و طول موج است. بنابراین یک صوت 343 هرتزی طول موج یک متر خواهد داشت.

واژهٔ «صدا»، معرب (عربی‌شدهٔ) «سدا»ی پارسی است.






سرعت صوت

سرعت صوت (به انگلیسی: Speed of sound)، فاصله‌ای‌ست که یک موج صوتی در مدت زمان یک ثانیه در یک سیال می‌پیماید. سرعت صوت مشخص می‌کند که این موج در بازهٔ مشخصی از زمان چه مسافتی را طی می‌کند. در هوای خشک و در دمای ۲۰ درجه سانتی‌گراد (۶۸ درجه فارنهایت)، سرعت صوت ۳۴۳٫۲ متر بر ثانیه (۱۱۲۶ فوت بر ثانیه)، ۱۲۳۶ کیلومتر بر ساعت (۷۶۸ مایل بر ساعت) یا به طور تقریبی، یک کیلومتر در سه ثانیه و یا تقریباً یک مایل در پنج ثانیه است. در دینامیک سیالات، سرعت صوت در یک سیال (گاز یا مایع)، به عنوان یک ابزار حساب‌گری نسبی خود سرعت استفاده می‌شود. سرعت یک شیئ (فاصله بر زمان) تقسیم بر سرعت صوت در سیال به عنوان عدد ماخ شناخته می‌شود. اشیایئ که با سرعت بیشتر از یک ماخ حرکت می‌کنند، در سرعت‌های سوپرسونیک حرکت می‌کنند.

سرعت صوت در یک گاز ایده‌آل، مستقل از فرکانس است وتابعی از ریشهٔ دوم دمای مطلق است ولی به فشار یا چگالی آن گاز وابسته نیست. برای گازهای مختلف، سرعت صوت به طور معکوس به ریشه دوم میانگین جرم مولکولی گاز بستگی دارد.

در گفتگوهای مرسوم روزمره، منظور از سرعت صوت، سرعت موج صوتی در سیالِ هوا است. با این حال، سرعت صوت از یک ماده به مادهٔ دیگر متفاوت است. صوت در مایعات و جامدات نامتخلخل سریع‌تر از هوا، حرکت می‌کند. می‌توان گفت سرعت صوت در آب حدود ۴٫۳ برابر (۱۴۸۴ متر بر ثانیه)، و در آهن تقریباً ۱۵ برابر (۵۱۲۰ متر بر ثانیه) سرعت آن در هوای ۲۰ درجه سانتی‌گراد است.

سرعت صوت در فلزات و جامدات، مایعات، درون محیط‌هایی که فشردگی هوای آن‌ها نسبت به محیط آزاد بیشتر است، مناطق سرد و مرطوب و پست تر از دریا، مناطق سرد و مرطوب در کنار دریا، مناطق سرد و مرطوب بالاتر از دریا، مناطق مرطوب بالاتر از دریا نسبت به هوای آزاد در حالت عادی به ترتیب ذکر شده بیشتر است. صوت از محیط‌هایی که مادی نیستند (در آنجا ماده وجود ندارد) نمی‌تواند عبور کند.






صدای انسان

صدای انسان متشکل از صوتی است که با استفاده از تارهای صوتی توسط انسان ساخته شده و برای صحبت کردن ، آواز خواندن ، خندیدن ، گریه کردن ، فریاد زدن و ... مورد استفاده قرار می گیرد.

تارهای صوتی فقط بخشی از صدای اولیه ی انسان را می سازند و به طور کلی مکانیزم تولید صدای انسان را می توان به سه بخش ریه ، تارهای صوتی موجود در حنجره و مفاصل تقسیم بندی کرد.

ریه ( پمپ ) باید جریان هوا و فشار هوای کافی را برای ارتعاش تارهای صوتی تولید کند تارهای صوتی یک دریچه ی ارتعاشی هستند که جریان هوا را از ریه صادر می کند تا پالس های قابل شنیدنی را به صورت یک منبع صدا در حنجره تولید نمایند.عضلات حنجره ، طول و تنش تارهای صوتی را برای ایجاد تن صدایی بسیار خوب تنظیم می کنند .

مفاصل ( بخش هایی از دستگاه صوتی در قسمت فوقانی حنجره شامل زبان ، کام ، گونه ، لب ها و غیره ) ، صدای نشأت گرفته از حنجره را واضح و شفاف و به نوعی فیلتر می کنند و تا حدی می توانند جریان هوای حنجره را به عنوان یک منبع صدا تقویت یا تضعیف نمایند .

تارهای صوتی در ترکیب با مفاصل قادر به تولید آرایه های بسیار پیچیده ای از صدا هستند . تن یا لحن صدا می تواند بیانگر احساسات مختلف انسان باشد : مانند خشم ، تعجب یا شادی .

خواننده ها از صدای انسان به عنوان ابزاری برای ایجاد موسیقی استفاده می کنند .






مهندسی صوت
مهندسی صوت (به انگلیسی: Acoustical engineering) قسمتی از علم صوت است که با ضبط و تکثیر صوت توسط وسایل الکتریکی و مکانیکی سروکار دارد. مهندسی صوت از رشته‌های مختلفی بهره می‌برد از جمله: مهندسی برق، صوت‌شناسی (acoustics)، روانشناسی صوتی (psychoacoustics) و موسیقی.






نوروصوت‌شناسی

نوروصوت‌شناسی یا آکوستو-اپتیک (Acousto-optics) شاخه‌ای از فیزیک است که به بررسی برهم کنش امواج نوری و امواج صوتی و به خصوص پراش لیزر به وسیلهٔ امواج صوتی می‌پردازد.

اپتیک تاریخچه‌ای بسیار طولانی دارد: از زمان یونانیان باستان تا عصر حاضر درست مانند اپتیک، آکوستیک نیز تاریخچه‌ای طولانی دارد که به زمان یونانیان باستان باز می‌گردد. در مقابل آکوستو اپتیک علمی بسیار نوین با تاریخچه‌ای کوتاه‌است. این زمینه از علم با پیش بینی بریلوئن در مورد پراش نور بوسیلهٔ امواج صوتی منتشر شده در ماده در سال ۱۹۲۲ میالادی آغاز شد. این پیش بینی ده سال بعد توسط دبای و سیرز و همچنین لوکاس و بیکارد آزمایش و تایید شد.

مورد خاص پراش مرتبهٔ اول تحت یک زاویهٔ فرود خاص (که بریلوئن هم پیش بینی آن را کرده بود) برای اولین بار توسط ریتوف دیده شد. رامان و نث در سال ۱۹۳۷ یک مدل عمومی تر را طراحی کردند که پراش‌های مرتبهٔ بالاتر را آشکار کند. این مدل بعدها در سال ۱۹۵۶ توسط فریزو توسعه پیدا کرد. مدل وی قابل تنظیم بر مرتبهٔ پراشی مشخص بود.

اساس نوروصوت‌شناسی، تغییر ضریب شکست به خاطر حضور موج صوتی در ماده‌است. موج صوتی یک شبکهٔ ضریب شکست در ماده به وجود می‌آورد و این شبکه توسط موج نوری "دیده" می‌شود. تغییر ضریب شکست که به خاطر نوسان فشار ایجاد شده، به وسیله آثار شکست نور، بازتاب نور، تداخل و پراش قابل شناسایی است.






آکوستو اپتیک

آکوستو اپتیک شاخه ای از فیزیک است که به بررسی برهم کنش امواج نوری و امواج صوتی و به خصوص پراش لیزر به وسیله ی امواج صوتی می پردازد.







مقدمه

اپتیک تاریخچه ای بسیار طولانی دارد: از زمان یونانیان باستان تا عصر حاضر درست مانند اپتیک، آکوستیک نیز تاریخچه ای طولانی دارد که به زمان یونانیان باستان باز می گردد. در مقابل آکوستو اپتیک علمی بسیار نوین با تاریخچه ای کوتاه است. این زمینه از علم با پیش بینیبریلوئندر مورد پراش نور بوسیله ی امواج صوتی منتشر شده در ماده در سال 1922 میالادی آغاز شد. این پیش بینی ده سال بعد توسط دبای و سیرز و همچنین لوکاس و بیکارد آزمایش و تایید شد.

مورد خاص پراش مرتبه ی اول تحت یک زاویه ی فرود خاص (که بریلوئن هم پیش بینی آن را کرده بود) برای اولین بار توسط ریتوف دیده شد. رامان و نث در سال 1937 یک مدل عمومی تر را طراحی کردند که پراش های مرتبه ی بالاتر را آشکار کند. این مدل بعد ها در سال 1956 توسط فریزو توسعه پیدا کرد. مدل وی قابل تنظیم بر مرتبه ی پراشی مشخص بود.

اساس آکوستو اپتیک، تغییر ضریب شکست به خاطر حضور موج صوتی در ماده است. موج صوتی یک شبکه ی ضریب شکست در ماده به وجود می آورد و این شبکه توسط موج نوری "دیده" می شود. تغییر ضریب شکست که به خاطر نوسان فشار ایجاد شده، به وسیله آثار شکست نور، بازتاب نور، تداخل و پراش قابل شناسایی است.






ابزارهای الکترو اپتیکی

ابزار های آکوستو اپتیکی شامل سه گروه زیر هستند:

1- مدولاتور الکترو اپتیکی

با تغییر پارامترهای موج صوتی مانند دامنه، فاز، فرکانس، و قطبش می توان خواص موج نوری را مدوله کرد. برهمکنش نور و صوت همچنین امکان مدوله کردن زمانی و فضایی موج نوری را فراهم می آورد.

یک راه ساده برای مدوله کردن پرتوی اپتیکی عبور نور از محیطی است که در آن موج صوتی به طور متناوب روشن و خاموش شود. وقتی صوت خاموش باشد زاویه ی پراش صفر و نور بی تغییر است. با روشن شدن صوت پراش رخ می دهد و شدت صوت در زوایای پراش افزایش ی یابد. با ثابت نگاه داشتن فرکانس صوتی و تغییر در توان مولد صوت می توان این ابزار را به یک مدولاتور آکوستواپتیکی تبدیل نمود. در طراحی مدولاتور باید به نحوی عمل کرد که ماکزیمم شدت نور در پرتوی پراشیده رخ بدهد. مدت زمانی که طول می کشد صوت از ماده عبور کند نیز محدودیتی بر سرعت سوییچ کردن تحمیل می کند. برای همین پرتوی نوری را تا حد ممکن باریک می کنند. باریک ترین پرتوی نوری ممکن را حد پهنای باند می نامند.

2- فیلتر های الکترو اپتیکی

رابطه ی 4 ارتباطی را میان طول موج صوتی و طول موج نوری نشان می دهد. در واقع پرتوی نوری تابیده شده، اگر دارای تعداد زیادی طول موج باشد فقط در طول موج های خاصی پراکنده می شود. مابقی طول موج ها فیلتر خواهند شد.

3- منحرف کننده های الکترو اپتیکی

با ایجاد یک تغییر در فرکانس صوت می توان تغییر زاویه ای در پرتوی نوری ایجاد کرد.





پژواک

پژواک (اکو)، بازگشت صدا از دیوار یا سایر اشیاست. صدا با سرعتی مشخّص و ثابت (نزدیک به ۳۴۴ متر بر ثانیه) حرکت می‌کند؛ بنابراین می‌توانیم با استفاده از پژواک، فاصلهٔ برخی از اشیا را محاسبه کنیم. دستگاه عمق‌سنج کشتی، برای محاسبهٔ عمق دریا از پژواک بهره می‌گیرد.

پژواک، خفّاش را قادر می‌سازد تا در تاریکی پرواز کند. رادار نیز از خاصیّت پژواک (وبا استفاده از امواج رادیویی) در کشف هدف بهره می‌گیرد.





فرامواد

متامتریال یا فرامواد به ماده مرکبی گفته می‌شود که دارای خواص نامتعارف الکترومغناطیس در ساختار وجودی خود است. آنچه این مواد را غیر معمول کرده است، خاصیت ضریب شکست منفی نور در آنها است، به این معنا که این مواد نور را در جهت مخالف مواد عادی منکسر می‌کنند. مواد الکترومغناطیس تشکیل دهنده آنها می‌تواند با دستکاری مختصر و دقیق ساختارشان «تنظیم» نیزبشود.

این مواد از ترکیب میله‌های ریز و مجموعه‌ای از حلقه‌های فلزی و مانند آنان ساخته شده است که برای اولین بار توسط دیوید اسمیت (David Smith استاد دانشگاه کالیفرنیا) ساخته شد. خواص نامتعارف این مواد سبب شده است از آنها در زمینه‌های مختلف استفاده شود از جمله آنها در مهندسی مایکروویو است که می‌توان به کاربرد در موجبرها، جبران پاشندگی، آنتن‌های هوشمند، لنزها و نمونه‌های فراوان دیگر استفاده کرد.
page1 - page2 - page3 - page4 - page5 - page7 - page8 - | 11:23 pm
بلافاصله پس از ابداع صنعت پردازش، حرفه ساخت و نمایش تصاویر متحرک به‌عنوان منبع کسب درآمد مطرح گردید. پس از مشاهده نتیجه موقفیت‌آمیز ابتکار جدید خود و محصول خروجی آن در فرانسه، لومیرها اقدام به برگزاری تور دور قاره اروپا به منظور به نمایش‌گذاری خصوصی اولین فیلم‌های خود برای عوام و خواص جوامع نمودند. آن‌ها در هر کشور به‌طور عادی مناظری جدید از محلات را به آلبوم خود اضافه نموده و خیلی سریع طرف‌های تجاری در کشورهای مختلف اروپا پیدا نمودند تا خریدار وسایل و عکس‌های آن‌ها بوده و در امر صادرات، واردات و تجاری کردن محصولات صحنه‌ای یاور آنان باشند. درسال ۱۸۹۸ (میلادی)، نمایش احساس اوبرامرگوا اولین فیلم تجاری شد که تا آن زمان تولید گشته بود. به زودی فیلم‌های دیگر نیز ارائه گشتند تا صنعت فیلم به‌عنوان صنعتی نو و مستقل جهان واریته را تحت‌الشعاع قرار دهد. شرکت‌های اختصاصی جهت تولید و توزیع فیلم به وجود آمدند و این در حالی بود که بازیگران سینما از محبوبیت بسیار زیادی برخوردار گشته و اجرت‌های سنگینی را برای بازی در فیلم‌ها طلب می‌نمودند. قبل از آن یعنی در سال ۱۹۱۷، چارلی چاپلین قراردادی برای حقوق سالیانه یک میلیون دلار منعقد نموده بود.




امروزه در ایالات متحده، عمده صنعت فیلم‌سازی در اطراف هالیوود متمرکز شده‌است. هم‌چنین مراکز محلی سینمایی در بسیاری از مناطق جهان به وجود آمده‌اند و به‌عنوان مثال صنعت فیلم سازی هندوستان (که مرکز آن در حوالی «بالی وود» قرار دارد) در سال بیش‌ترین تعداد فیلم در جهان را تولید می‌نمایند. این‌که اگر در سال ده هزار فیلم با خصوصیات مثبته توسط صنایع ولی فیلم‌های شهوت‌انگیز تولید شوند، نکته قابل مناقشه آنست که این فیلم‌ها بایستی تعیین صلاحیت گردند. اگر چه هزینه‌های تولید فیلم باعث هدایت تولیدات سینما به سمت تمرکز در تحت نظر استودیوهای سینمایی گردید، پیشرفت‌های جدید در مقرون به‌صرفه ساختن تجهیزات ساخت فیلم باعث شکوفائی تولیدات مستقل فیلم گشتند.

سود به‌عنوان یک عامل کلیدی در هر صنعتی مطرح است، با توجه به ماهیت هزینه‌بر و مخاطره‌آمیز فیلم‌سازی، برای ساخت بسیاری از فیلم‌ها نیاز به هزینه‌های بیش از حد دارد. یک مثال منفی این مورد فیلم واتر ورلد کوین کاستنر هست. با این حال، تلاش بسیاری از فیلم‌سازان به دنبال خلق آثاری است که از لحاظ اجتماعی مقبولیت پیدا نمایند. جایزه دانشگاهی (که به نام «اسکار» نیز شناخته می‌شود) مهم‌ترین جوایزی است که در ایالات متحده به فیلم‌های برتر اعطاء گشته و ظاهراً براساس شایستگی‌های هنری آن باعث شناسائی جهانی آن فیلم می‌گردد. هم‌چنین، فیلم‌ها به سرعت جای خود را در آموزش، به جا و در کنار صحبت‌ها و متون استاد باز نمودند.
تعداد و نوع کارکنان لازم جهت تهیه فیلم بستگی به ماهیت آن دارد. بسیاری از فیلم‌های حادثه‌ای هالیوود نیاز به صحنه‌سازی‌های کامپیوتری (سی. جی. آی) دارند که توسط یک دوجین عوامل قالب‌های سه بعدی، انیمیشن کارها، روتوسکوپ کارها و سازندگان تدارک می‌گردند. به‌هرحال، یک فیلم کم خرج مستقل توسط عوامل اصلی که معمولاً دستمزد کمی هم دارند قابل ساخت است. کار فیلم‌سازی در تمام نقاط دنیا با استفاده از فناوری‌ها، سبک‌های بازی و اقسام آن در حال انجام است. بودجه برخی از این فیلم‌ها بسیار زیاد و در حد تعهد دولتی است مانند نمونه‌هائی در چین و در مقابل برخی دیگر در حد فیلم‌سازی در سیستم استودیوی آمریکا هزینه‌بر هستند.عوامل فیلم عبارت‌اند از گروهی از مردم که به منظور تولید یک فیلم یا پروژه تصویر متحرک توسط شرکت فیلم‌ساز استخدام می‌شوند. نظیر «پخش»، «بازیگران» که در جلوی دوربین ظاهر می‌شوند و افرادی که برای شخصیت‌های فیلم صداسازی می‌نمایند و...

فیلم‌سازی مستقل معمولاً در خارج از هالیوود و دیگر سیستم‌های استودیوئی انجام می‌شود. یک فیلم مستقل (یا فیلم هند و چین فیلمی است که در ابتدا بدون برنامه‌ریزی مالی و توزیع حمایت شده از سوی استودیوهای فیلم‌سازی عظیم ساخته می‌شود. خلاقیت، تجارت و دلایل تکنولوژیکی تماماً از عوامل رشد فیلم‌های هند و چین در اواخر سده بیستم و اوایل سده ۲۱ به حساب می‌آیند.

از منظر خلاقیت، جلب حمایت استودیوها برای فیلم‌های آزمایشی بسیار دشوار است. وجود اجزای آزمایشی در موضوع و سبک از جمله مسائل ممنوعه استودیوهای بزرگ فیلم‌سازی هستند.

از لحاظ کاری، بودجه‌های سنگین استودیوهای فیلم‌سازی نیز آن‌ها را به سوی انتخاب‌های محافظه‌کارانه در مسائل مربوط به پخش و گزینش عوامل سوق می‌دهد. این مشکل با در نظر گرفتن مسائل مشارکتی شرکت‌ها نیز بیش‌تر تشدید می‌گردد. (مشارکت از ۱۰٪ در سال ۱۹۸۷ به حدود دو سوم فیلم‌ها در سال ۲۰۰۰ توسط شرکت برادران وارنر افزایش پیدا کرده‌است. یک مدیر تولید ناشناس تا زمانی که تجارب موفقی در فیلم‌سازی صنعتی یا تلویزیون نداشته باشد، تقریباً هیچگاه در استودیوها پذیرفته نمی‌شود. استودیوها هم‌چنین از هنرپیشگان غیرمعروف در فیلم‌های خود و به‌خصوص در نقش‌های کلیدی استفاده نمی‌نمایند.

تا زمان ابداع دیجیتال، هزینه‌های تجهیزات حرفه‌ای فیلم و نگاه‌داری آن‌ها نیز از جمله موانع اصلی در تولید، مدیریت، یا بازیگری در فیلم‌های استودیوهای سنتی به‌شمار می‌آمد. سرعت بالا رفتن هزینه‌های ساخت یک فیلم ۳۵ میلیمتری از نرخ تورم نیز افزون است. تنها در سال ۲۰۰۲ و بنا به گزارش "ورایته هزینه نگاتیو فیلم ۲۳٪ افزایش نشان داده‌است. فیلم‌ها هم‌چنین نیازمند صرف هزینه‌های سنگین روشنائی و تجهیزات مربوط به مرحله بعد از تولید هستند.

ابداع دوربین‌های مصرفی کمکوردر در سال ۱۹۸۵ و از آن مهم‌تر به بازار آمدن ویدیوی دیجیتال کیفیت بالا در اوایل دهه ۱۹۹۰، موانع تکنولوژیکی تولید فیلم را تا حد زیادی کاهش دادند. در این راستا هزینه‌های مراحل تولید و پس از تولید نیز به نحو شایسته‌ای کاهش یافتند؛ امروزه، تجهیزات سخت‌افزاری و نرم‌افزاری مربوط به مرحله پس از تولید را می‌توان بر روی یک کامپیوتر شخصی نصب نمود. فناوری‌هائی مانند دی. وی. دی، اتصالات فایر وایر و سیستم غیرخطی ویرایش، هم‌چنین نرم‌افزارهای حرفه‌ای مانند ادوبی پریمیر پرو و فاینال کات پرو شرکت اپل وغیرحرفه‌ای مانند فاینال کات اکسپرس شرکت اپل و آی مووی، امر فیلم‌سازی را به صورتی کم هزینه میسر ساخته‌است.

از زمان معرفی فناوری دی وی، امر تولید بیش از پیش مردمی گشت. در حال حاضر فیلم‌سازان این امکان را دارند که کار فیلم‌برداری و ویرایش یک فیلم، تولید و وی/رایش صدا و موسیقی و میکس نهائی را بر روی یک کامپیوتر خانگی انجام دهند. به‌هر حال، در عین حالی که روش‌های تولید مردمی گشته‌اند، مسائلی مانند بودجه‌بندی، توزیع و بازاریابی هنوز مشکل و در قالب سیستم سنتی انجام می‌پذیرند. بسیاری از فیلم‌سازان مستقل برای جلب توجه عموم به فیلم خود و فروش آن بروی فستیوال‌ها حساب می‌کنند.
ساعت : 11:23 pm | نویسنده : admin | مطلب قبلی | مطلب بعدی
فیلم | next page | next page